On Connectedness of Sets in the Real Spectra of Polynomial Rings
نویسنده
چکیده
Let R be a real closed field. The Pierce-Birkhoff conjecture says that any piecewise polynomial function f on Rn can be obtained from the polynomial ring R[x1, . . . , xn] by iterating the operations of maximum and minimum. The purpose of this paper is threefold. First, we state a new conjecture, called the Connectedness conjecture, which asserts, for every pair of points α, β ∈ Sper R[x1, . . . , xn], the existence of connected sets in the real spectrum of R[x1, . . . , xn], satisfying certain conditions. We prove that the Connectedness conjecture implies the Pierce-Birkhoff conjecture. Secondly, we construct a class of connected sets in the real spectrum which, though not in itself enough for the proof of the Pierce-Birkhoff conjecture, is the first and simplest example of the sort of connected sets we really need, and which constitutes the first step in our program for a proof of the Pierce-Birkhoff conjecture in dimension greater than 2. Thirdly, we apply these ideas to give two proofs of the Connectedness conjecture (and hence also of the Pierce–Birkhoff conjecture in the abstract formulation) in the special case when one of the two points α, β ∈ Sper R[x1, . . . , xn] is monomial. One of the proofs is elementary while the other consists in deducing the (monomial) Connectedness conjecture as an immediate corollary of the main connectedness theorem of this paper.
منابع مشابه
A Connectedness Theorem for Real Spectra of Polynomial Rings
Let R be a real closed field. The Pierce-Birkhoff conjecture says that any piecewise polynomial function f on Rn can be obtained from the polynomial ring R[x1, . . . , xn] by iterating the operations of maximum and minimum. The purpose of this paper is twofold. First, we state a new conjecture, called the Connectedness conjecture, which asserts the existence of connected sets in the real spectr...
متن کاملExtension of the Douady-Hubbard's Theorem on Connectedness of the Mandelbrot Set to Symmetric Polynimials
متن کامل
On annihilator ideals in skew polynomial rings
This article examines annihilators in the skew polynomial ring $R[x;alpha,delta]$. A ring is strongly right $AB$ if everynon-zero right annihilator is bounded. In this paper, we introduce and investigate a particular class of McCoy rings which satisfy Property ($A$) and the conditions asked by P.P. Nielsen. We assume that $R$ is an ($alpha$,$delta$)-compatible ring, and prove that, if $R$ is ni...
متن کاملOn constant products of elements in skew polynomial rings
Let $R$ be a reversible ring which is $alpha$-compatible for an endomorphism $alpha$ of $R$ and $f(X)=a_0+a_1X+cdots+a_nX^n$ be a nonzero skew polynomial in $R[X;alpha]$. It is proved that if there exists a nonzero skew polynomial $g(X)=b_0+b_1X+cdots+b_mX^m$ in $R[X;alpha]$ such that $g(X)f(X)=c$ is a constant in $R$, then $b_0a_0=c$ and there exist nonzero elements $a$ and $r$ in $R$ such tha...
متن کاملOn strongly J-clean rings associated with polynomial identity g(x) = 0
In this paper, we introduce the new notion of strongly J-clean rings associated with polynomial identity g(x) = 0, as a generalization of strongly J-clean rings. We denote strongly J-clean rings associated with polynomial identity g(x) = 0 by strongly g(x)-J-clean rings. Next, we investigate some properties of strongly g(x)-J-clean.
متن کامل